Preparation and Characterization of Lanthanum Carbonate Hydroxide

J. SUN, T. KYOTANI, AND A. TOMITA*

Chemical Research Institute of Non-Aqueous Solutions, Tohoku University, Katahira, Sendai 980, Japan

Received October 2, 1985; in revised form March 17, 1986

Two polymorphs of LaCO₃OH were prepared from either La₂(CO₃)₃ or LaBr(OH)₂ at an ambient pressure. The first one was the same as reported before by several workers who prepared it by the hydrothermal technique. The second one is a new polymorph of LaCO₃OH. The infrared spectra and thermogravimetric curves of these two polymorphs were determined and compared. Its crystal data were determined by X-ray powder diffraction: orthorhombic, a = 5.033(3) Å, b = 8.598(5) Å, c = 7.401(3) Å. All data support that the structure of this new modification is similar to that of ancylite. © 1986 Academic Press, Inc.

Introduction

Lanthanum bromide oxide has been widely used as an X-ray phosphor (1), the disadvantage of this compound being that it readily reacts with water vapor and carbon dioxide in ambient atmosphere (2). In the first paper of this series the authors studied the reaction between LaBrO and H₂O (3). During the course of that study several new compounds were identified, and their characteristics were reported in the preceding paper (4). We are now investigating the reaction between LaBrO and a mixture of H₂O vapor and CO₂, and we obtained two polymorphs of LaCO₃OH at an ambient pressure.

Aumont *et al.* (5), Christensen (6), and Haschke (7) have prepared $LaCO_3OH$ by using a hydrothermal technique, and its

crystal structure was analyzed. The former two groups have proposed the hexagonal structures: a = 12.57(9) Å, c = 10.02(2)Å (5), and a = 12.616(8) Å, c = 10.022(5) Å (6). Haschke also indexed his X-ray diffraction data using a hexagonal cell: a =12.634(2) Å and c = 10.048(2) Å (7). However, from a more detailed analysis he concluded that LaCO₃OH is an orthorhombic phase (a = 21.891(5) Å, b = 12.639(3) Å, and c = 10.047(2) Å), and the parameters for orthorhombic cell is related to those of hexagonal subcell by simple equations (7). The crystal parameters of one polymorph we prepared in this study were very similar to these known parameters. The structure of another polymorph was completely different from the above. The main subject of this paper is to describe the crystal data, infrared spectrum, and thermal behavior of this new LaCO₃OH.

Caro and his colleagues characterized

^{*} To whom correspondence should be addressed.

many $LnCO_3OH$ compounds and classified them into two groups (8–13). The structure of A-type and B-type $LnCO_3OH$ are similar to those of ancylite and bastnaesite, respectively. LaCO₃OH which has been reported before has been ascribed to B-type, but Atype LaCO₃OH has not been reported so far. It may be interesting to check whether the new modification prepared in this study is A-type LaCO₃OH or not.

Experimental

Preparation of the sample. Two different procedures were employed for preparing LaCO₃OH. In the first method we utilized $La_2(CO_3)_3$ as a starting material. A hydrolysis reaction was performed by weighing 25 g of $La_2(CO_3)_3$ into a flask, adding 500 cm³ of deionized water, heating at 350 K for 20 hr and then at 370 K for 1.5 hr. The product was separated from the solution by filtration and then dried at 410 K. This procedure gives the first polymorph which we term here $LaCO_3OH(I)$. Aumont *et al.* (5) and Haschke (7) also prepared this compound from $La_2(CO_3)_3$, but the reaction conditions were totally different; the temperature and pressure used by Haschke, for example, was 773 K and 100 MPa.

LaBr(OH)₂ was used in the second procedure in place of La₂(CO₃)₃. About 3 g of LaBr(OH)₂ was mixed with 6 cm³ of deionized water, and then was allowed to react with CO₂ at 343 K for 1 day in the presence of saturated water vapor at this temperature. The product was washed with deionized water to remove La and Br ions. The reaction was continued for another day with 20 cm³ of fresh water. This procedure was repeated twice. The product was washed thoroughly with water and dried at 403 K for 3 hr. The product is termed La CO₃OH(II).

It should be worthwhile to mention some variations from the above fundamental procedures. $La_2(CO_3)_3$ used in the first method

was prepared by contacting a $La(OH)_3$ slurry with CO₂, followed by filtration and further displacement of OH groups with CO₂ by the gas phase reaction at 320 K. This La₂(CO₃)₃ contained a small amount of unreacted La(OH)₃. This impurity might have some essential roles in the later step. When pure La₂(CO₃)₃ was used, the resulting product was a mixture of LaCO₃OH(I) and (II). In the second method LaBrO can also be used as a starting material to obtain LaCO₃OH(II). The experimental procedure is the same as in the case of LaBr(OH)₂.

Characterization of the product. The elemental analysis was conducted by the method described in the preceding paper (4): Found for LaCO₃OH(I); La, 62.82; C, 5.80; H, 0.68%: Calc. for LaCO₃OH \cdot 0.25H₂O; La, 63.02; C, 5.45; H, 0.69%: Found for LaCO₃OH(II); La, 62.06; Br, 0.79; C, 5.34; H, 0.86%: Calc. for La Br_{0.02}CO₃(OH)_{0.98} \cdot 0.4H₂O; La, 61.90; Br, 0.71; C, 5.35; H, 0.80%. This compound has small amounts of water of crystallization and also some Br-containing impurities. Infrared spectra and thermogravimetric curves were recorded by the same procedures as reported before (4).

Results and Discussion

Figure 1 shows TG curves for both types of LaCO₃OH. DTA curves are not shown here, but two endothermic peaks were observed for both. The decomposition mainly took place in the following two stages.

$$2LaCO_{3}OH \xrightarrow{700-840 \text{ K}} La_{2}O_{2}CO_{3} + H_{2}O + CO_{2} \quad (1)$$

$$La_2O_2CO_3 \xrightarrow{980-110 \text{ K}} La_2O_3 + CO_2.$$
(2)

.......

The observed weight losses for the respective stages for LaCO₃OH(I) were 16.2 and 10.1%. Theoretical values for La $CO_3OH \cdot 0.25H_2O$ are 16.1 and 10.0%. The observed weight losses, for LaCO₃OH(II),

FIG. 1. TG curves for the thermal decomposition of two polymorphs in air, the heating rate being 10 K min^{-1} . (a) LaCO₃OH(I), (b) LaCO₃OH(II).

17.3 and 9.8%, agree with the theoretical values for $LaBr_{0.02}CO_3(OH)_{0.98} \cdot 0.4H_2O$, 17.0 and 9.8%. A slight weight decrease was observed for the latter case at a hightemperature range above 1200 K. This weight change corresponds to the release of Br from the impurity in LaCO₃OH(II). It can be said that the agreement between elemental analysis and thermogravimetric analysis is fairly good for both polymorphs. Decomposition temperatures reported by Aumont et al. (5) were 690-790 K for the first stage and 1020-1130 K for the second stage followed by a small weight loss at 1270-1320 K. The temperature ranges determined by Haschke (7) were 700-800 K and 900-1070 K. Although there are some discrepancies among these temperature ranges, it may be concluded that our two compounds and those reported earlier are very similar from the viewpoint of thermal behavior.

Infrared spectra of LaCO₃OH(I) and (II) are illustrated in Fig. 2. Four modes of $CO_3^{2^-}$ ion appeared at 1070–1100 cm⁻¹ (ν_1), 850–880 cm⁻¹ (ν_2), 1400–1510 cm⁻¹ (ν_3), and 690–730 cm⁻¹ (ν_4) (5, 14). The sharp band above 3610 cm⁻¹ can be assigned to the stretching vibration of free OH group. Klevtsov *et al.* (15) studied the infrared spectrum of $Ln(OH)_2$ Cl and assigned the peaks between $500-800 \text{ cm}^{-1}$ as OH-deformation bands. The absorption bands at around 600 and 800 cm⁻¹ in Fig. 2 may be ascribed to this mode.

Spectrum a for LaCO₃OH(I) is very similar to those reported earlier (5, 6), which were identified as B-type according to Caro's classification (10). In other words the structure of this compound is similar to that of bastnaesite. The CO_3^{2-} group in bastnaesite is located perpendicular to (LaOH)²⁺ plane. The presence of two peaks in the ν_2 mode (nondegenerate) and three peaks in the ν_1 mode is an indication of nonequivalent CO_3^{2-} groups in the structure, and these are characteristics for B-type compounds (5, 6, 13). The presence of several OH bands both in stretching and deformation regions suggests the presence of nonequivalent OH groups. This is also characteristic for B-type, although the number of OH-stretching bands in Fig. 2a are somewhat different from those reported in the literature. We observed three bands at 3487, 3618, and 3631 cm^{-1} and one broadband below 3480 cm⁻¹, whereas Aumont etal. (5) reported six peaks for B-LaCO₃OH, and Dexpert *et al.* (13) found four peaks for B-NdCO₃OH in this region. As a whole

FIG. 2. IR spectra of two polymorphs. (a) La $CO_3OH(I)$, (b) La $CO_3OH(I)$.

	CO3 ²⁻							OH-			
	ı	'3	ν_1	I	·2	ν	4	i	v	δ	
A-LaCO ₃ OH	1485	1416	1074	858	804	712	696	34	44	72	3
A-NdCO ₃ OH ^a	1495	1450	1081	858	820	718	700	34	50	72	9
B-LaCO ₃ OH	1512	1435 1408	(1080)	872 849	777	727	706	3631 3618	3487	(684) (663)	590
B-NdCO ₃ OH ^a	1500	1440 1410	(1100) (1087)	877 850	788	(743) 732	694	3635 3615	3485 3465	(668)	620

 TABLE I

 Infrared Absorption Frequencies (cm⁻¹)

^a From Ref. (13).

characteristic points shown in Fig. 2a are well consistent with the structure for B-La CO_3OH .

On the other hand, spectrum b for La CO₃OH(II) is less complicated. Only twofold splitting of the degenerate modes of CO_3^{2-} ions (ν_3 and ν_4) were observed, and only one stretching band of hydrogenbonded OH group was seen at 3440 cm^{-1} . It is highly probable that all CO_3^{2-} ions occupy more or less identical sites in the crystal lattice. Although the presence of A-La CO₃OH has not been reported, this spectrum can be compared with those for a-Nd CO_3OH and its homologs (12, 13, 16). The above mentioned features for LaCO₃OH(II) are quite similar to those of A-LnCO₃OH. The structure of ancylite was reported by Dexpert et al. (10) and Negro et al. (17).

FIG. 3. X-ray diffraction patterns of two polymorphs. (a) $LaCO_3OH(I)$, (b) $LaCO_3OH(II)$.

The former group suggests that the CO_3^{2-} group in ancylite lies in parallel with $(LaOH)^{2+}$ planes, the oxygen atom of CO_3^{2-} being located between OH groups in two $(LnOH)^{2+}$ planes above and below. The characteristics of infrared spectrum are not in conflict with this structure. Therefore the infrared analysis strongly suggests that La $CO_3OH(I)$ and (II) can be assigned to Band A-type LaCO₃OH, respectively. Table I summarizes the observed frequencies according to the above notation for these two compounds and two polymorphs of Nd $CO_3OH(13)$.

Figure 3 shows the X-ray powder diffraction patterns for the two polymorphs. The upper pattern was almost the same as reported earlier (5-7). This figure together with Fig. 2 clearly indicates that La $CO_3OH(I)$ is the same as B-LaCO₃OH which has already been reported, although the preparation procedure is quite different: the pressure employed in this study was much lower than those reported. The X-ray pattern for a new modification, La CO₃OH(II), is different from the above. It was suggested from the infrared analysis that this modification may be A-LaCO₃OH. and thus we compared the pattern (Fig. 3b) with those of A- $LnCO_3OH$ group (Ln = Pr, Nd, Sm, Eu, Gd, Tb, and Dy) reported by Sawyer et al. (11) who indexed the X-ray

TABLE II Powder X-ray Diffraction Data for LaC0₁OH(II)^a

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	d_{exp}	_/	d_{cal}	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(deg)	(A)	<i>I</i> / <i>I</i> ₁	(A)	h k l
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15.77	5.62	48	5.609	011
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.42	4.35	100	4.344	110
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.70	4.29	45	4.299	020
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	23.78	3.742	61	3.746	111
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24.02	3.705	57	3.717	021
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				3.701	002
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26.25	3.395	46	3.399	012
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	29.95	2.983	81	2.990	121
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				2.981	102
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31.90	2.805	8	2.805	022
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	33.50	2.675	30	2.673	031
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	35.66	2.518	27	2.517	200
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36.60	2.455	18	2.450	122
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	38.13	2.360	50	2.361	131
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39.80	2.265	2	2.266	032
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41.55	2.173	11	2.172	220
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	42.12	2.145	16	2.149	040
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				2.145	113
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43.40	2.085	40	2.084	221
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43.90	2.062	15	2.064	041
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	44.80	2.023	38	2.023	212
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	46.12	1.968	23	1.969	123
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	47.68	1.907	10	1.910	141
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	48.76	1.868	26	1.870	033
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	49.32	1.848	8	1.850	004
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	49.70	1.834	9	1.832	231
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50.40	1.811	3	1.809	014
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52.20	1.752	7	1.753	133
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	52.64	1.739	10	1.744	142
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1.737	104
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52.98	1.728	6	1.726	213
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	53.88	1.702	13	1.702	114
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	55.70	1.650	8	1.647	310
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	56.60	1.626	6	1.627	150
59.35 1.557 5 1.559 0.52 59.90 1.544 6 1.543 1.43 60.44 1.532 9 1.529 3.21 1.528 3.02 61.82 1.501 12 1.501 2.33	57.82	1.595	7	1.596	241
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59.35	1.557	5	1.559	052
59.90 1.544 6 1.543 1.43 60.44 1.532 9 1.529 3.21 1.528 3.02 1.528 3.02 61.82 1.501 12 1.501 2.33				1.555	034
60.44 1.532 9 1.529 3 2 1 1.528 3 0 2 61.82 1.501 12 1.501 2 3 3	59.90	1.544	6	1.543	143
1.528 3 0 2 61.82 1.501 12 1.501 2 3 3	60.44	1.532	9	1.529	321
61.82 1.501 12 1.501 2 3 3				1.528	302
	61.82	1.501	12	1.501	233

^a Orthorhombic: a = 5.033(3) Å, b = 8.598(5) Å, c = 7.401(3) Å.

powder patterns in terms of an orthorhombic unit cell. The present data showed a close resemblance to those for ancylitetype compounds; all of the patterns were indexable on orthorhombic symmetry. Refinement of the parameters yielded a =5.033(3) Å, b = 8.598(5) Å, and c = 7.401(3) Å. The observed lattice spacings were in good accordance with the calculated values as shown in Table II. Sawyer *et al.* (11) found that the lattice parameters increased with the increase in the radius of Ln^{3+} ion, and established the following relationship between the cell volume and the radius (Å).

Cell volume =
$$81.85 + 223.58 \times r_{Ln^{3+}}$$
.
(3)

In the case of an La compound the above equation predicts the cell volume of 319.1 $Å^3$, whereas the calculated value from the above parameters was 320.3 Å³. The agreement is fairly good. As mentioned above Sawyer et al. (11) have reported seven homologs of A-LaCO₃OH. Tareen also prepared hydrothermally several A-LnCO₃OH for heavier rare earth elements (Gd-Yb). but for lighter elements (La, Ce, Pr, Nd, Sm, Eu, and Gd) B-LnCO₃OH have been found (18). The present study clearly indicates the existence of A-type polymorph for LaCO₃OH. Both the infrared spectrum and the X-ray diffraction patterns strongly support this identification.

References

- J. G. RABATIN, Am. Chem. Soc. Symp. Ser. 164, 203 (1981).
- 2. J. G. RABATIN, U.S. Pat. 3,591,516 (1971).
- 3. J. SUN, T. KYOTANI, Y. TAMAI, AND A. TOMITA, React. Solids 1, 19 (1985).
- 4. J. SUN, T. KYOTANI, AND A. TOMITA, J. Solid State Chem. 64, 200 (1986).
- 5. R. AUMONT, F. GENET, M. PASSARET, AND Y. TOUDIC, C.R. Acad. Sci. Paris Ser. C 272, 314 (1971).
- 6. A. N. CHRISTENSEN, Acta Chem. Scand. 27, 2973 (1973).
- 7. J. M. HASCHKE, J. Solid State Chem. 12, 115 (1975).

- 8. P. CARO AND M. LAMAITRE-BLAISE, C.R. Acad. Sci. Paris Ser. C 269, 687 (1969).
- 9. P. CARO, M. LAMAITRE-BLAISE, H. DEXPERT, AND J. O. SAWYER, C.R. Acad. Sci. Paris Ser. C 272, 57 (1971).
- H. DEXPERT, M. LEMAITRE-BLAISE, AND P. CARO, "Proc. 7th Inter. Symp. Reactivity of Solids," p. 758, Chapman & Hall, London, 1972.
- 11. J. SAWYER, P. CARO, AND L. EYRING, *Rev. Chim. Miner.* **10**, 93 (1973).
- 12. H. DEXPERT AND P. CARO, *Mat. Res. Bull.* 9, 1577 (1974).
- 13. H. DEXPERT, E. ANTIC-FIDANCEV, J. P. COU-

TURES, AND P. CARO, J. Cryst. Spectrosc. Res. 12, 129 (1982).

- 14. R. P. TURCOTTE, J. O. SAWYER, AND L. EYRING, Inorg. Chem. 8, 238 (1969).
- 15. P. V. KLEVTSOV, V. M. BEMBELI, AND Z. A. GRANKINA, *Zh. Strukt. Khim.* **10**, 638 (1969).
- 16. P. E. CARO, J. O. SAWYER, AND L. EYRING, Spectrochim. Acta A 28, 1167 (1972).
- 17. A. D. NEGRO, G. ROSSI, AND V. TAZZOLI, Am. Mineral. 60, 280 (1975).
- J. A. K. TAREEN, Proc. 1st Intern. Symp. Hydrothermal Reactions, March 1982, Tokyo, Japan, p. 544.